Solar Lotsen Gießen informieren:

PV auf Dächern und an Balkonen

- > PV für Privathäuser
- > PV- Lösungen für Mehrfamilienhäuser
- > Steckerfertige PV- Anlagen (Balkonkraftwerk)

Mach Deinen doch strom doch selbst

Lothar Balling

www.solarlotsen-giessen.de

beratung@solarlotsen-giessen.de

Agenda

- Solarlotsen Gießen
- 2. Allgemeines
- 3. Update Technik
- 4. Balkon Kraftwerke (BKW)
- 5. Dach- PV für EFH und MFH
- 6. Q&A, Diskussion

Gute Beratung tut Not

Bild: https://www.solaranlage-ratgeber.de/

Aber:

- ist diese wirklich unabhängig?
- hat sie/er keine Eigeninteressen?
- hat sie/er genügend Erfahrung?
- ist sie/er schnell verfügbar und berät anbieter- und technik-neutral?
- Bleibt sie/ er am Ball bis zur finalen Umsetzung?
- → da kann ein ehrenamtliches Netzwerk von privaten Erfahrungsträgern helfen

www.solarlotsen-giessen.de

Was haben wir bisher erreicht?

www.solarlotsen-giessen.de

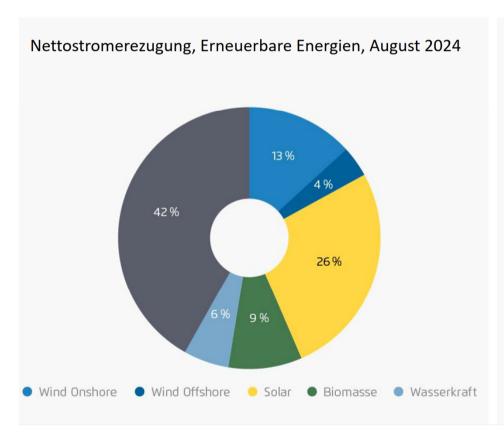
 Seit März 2023, über 200 Anfragen erhalten, ca. 300 kWp Dach und BKW- Projekte in Gießen und Umgebung geplant, projektiert und teilweise im Selbstbau umgesetzt

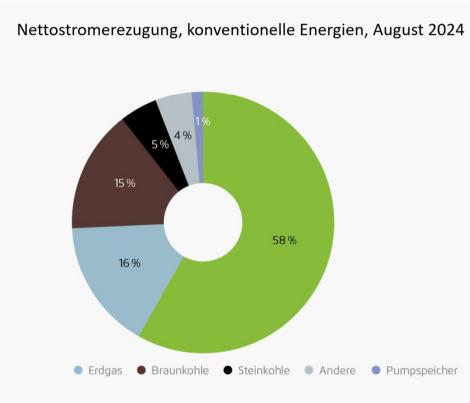
- Vorzeigeprojekt auch für die Bürgerbeteiligung in der Stadt

- Erweiterung auch auf Landkreis seit 2024

Agenda

- 1. Solarlotsen Gießen
- 2. Allgemeines
- 3. Update Technik
- 4. Balkon Kraftwerke (BKW)
- 5. Dach- PV für EFH und MFH
- 6. Q&A, Diskussion





Erneuerbare Energie

Die Energiewende nimmt wieder Fahrt auf: Seit Jahresbeginn tragen Erneuerbare Energien fast 60 Prozent zur Stromerzeugung bei.

2 | Agorameter Monatsauswertung August 2024

Zubau PV

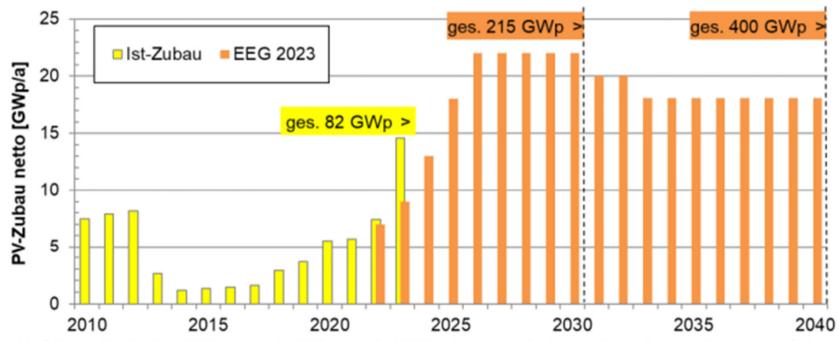
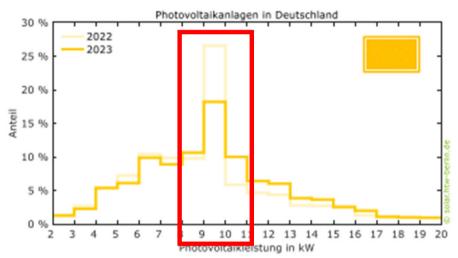


Abbildung 2: Netto-PV-Zubau: Ist-Werte bis 2022, Ausbaupfad zur Erreichung der gesetzlichen Ziele [BMWK1], [EEG2023].

https://www.ise.fraunhofer.de/de/veroeffentlichungen/studien/aktuelle-fakten-zur-photovoltaik-in-deutschland.html



PV Anlagen in Deutschland

Bild 13 Häufigkeitsverteilung der DC-Nennleistung der in den Jahren 2022 und 2023 neu installierten PV-Dachanlagen im Marktsegment zwischen 2 kW und 20 kW (Daten: Marktstammdatenregister, Klassenbreite: 1 kW).

Typische Leistungsgrößen Dach PV

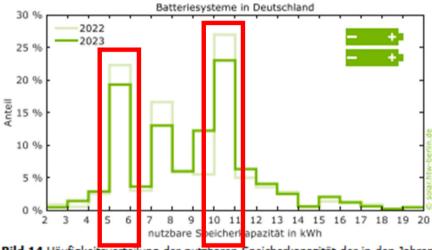


Bild 14 Häufigkeitsverteilung der nutzbaren Speicherkapazität der in den Jahren 2022 und 2023 neu installierten Batteriesysteme im Marktsegment bis 20 kWh und bis 20 kW (Daten: Marktstammdatenregister, Klassenbreite: 1 kWh).

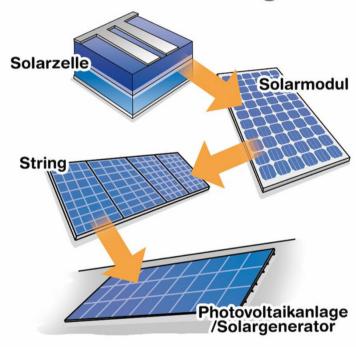
Typische Leistungsgrößen Speicher

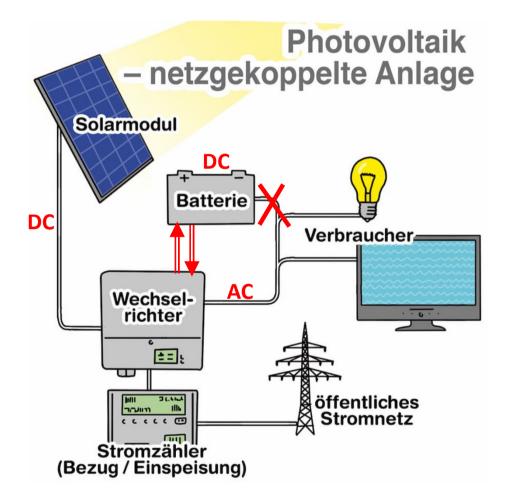
Quelle: https://solar.htw-berlin.de/studien/stromspeicher-inspektion-2024/

8

Agenda

- 1. Solarlotsen Gießen
- 2. Allgemeines
- 3. Update Technik
- 4. Balkon Kraftwerke (BKW)
- 5. Dach- PV für EFH und MFH
- 6. Q&A, Diskussion




Überblick Technik

Der Aufbau einer Photovoltaikanlage

DC = Direct Current = Gleichstrom

AC = Alternating Current = Wechselstrom

Quelle: https://www.solaranlage-ratgeber.de/

PV Module für Dach und Balkon (Beispiele)

Halb-Zellen-Module

Standard:

420-450 Wp Halbzellen 22- 25 kg ca. 1,7m x 1,1m ~ 80-90€

~ 20€/ kWp

All Black:

420-450 Wp Halbzellen 22- 25 kg ca. 1,7m x 1,1m ~ 100- 120€ ~ 25€/ kWp

Flexibel:

~ 310 Wp dünn und leicht < 5 kg ca. 2m x 0,9m ~ 130- 140€ ~40€/kWp

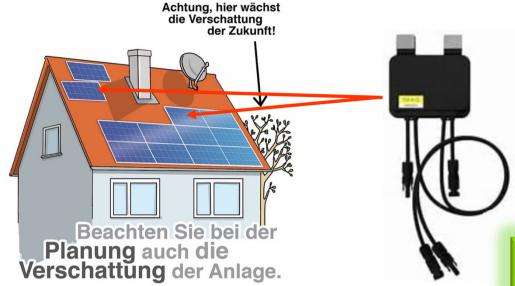
Bifaziale- Technik

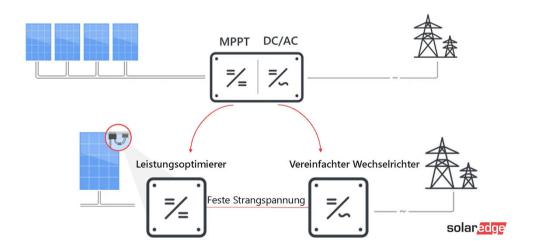
Albedo-Werte (Rückstrahlvermögen) verschiedener Untergrundflächen:

Material	Albedo (Maximalwert: 1,0)					
Asphalt	0,05 - 0,15					
Dachziegel	0,1 - 0,35					
Ackerboden	0,2 - 0,4					
Wiese / Rasen	0,2 - 0,4					
Dach mit hellem Anstrich	0,6 - 0,7					
Schnee	0,8 - 0,9					

- Bifaziale PV-Module wandeln Licht in Strom beidseitig um. Dadurch erhöht sich ihr Wirkungsgrad und Ertrag.
- Die zusätzlich mögliche Stromausbeute wird stark durch die Bedingungen vor Ort beeinflusst.
- Bifaziale Panels eignen sich zum Beispiel ideal als Dächer für Carports, Terrassen, oder auch für Solarzäune.
- → Mehrertrag von 10- 25% abhängig von den Randbedingungen (Albedo-Wert, Abstand zur Fläche) möglich

Quelle: https://www.mvv.de/photovoltaik/ratgeber





Lösung gegen Verschattung

Bei Dach mit wandernden Schatten (etwa durch einen Schornstein), mit versch. Ebenen/ Neigungswinkel, kann sich die Installation von Optimierern lohnen.

Kosten Leistungsoptimierer: ca. 30- 50€/ pro Modul

Stromspeicher

Beispiel:

- LFP (Lithium-Eisen-Phosphat)
- DC- Speicher
- 2x15 kWh
- modular a' 5 kWh
- Hybrid WR (Eingang auch aus der Batterie) darüber

Stromspeicher helfen den Strom-Eigenverbrauch zu erhöhen

Dickt werbrauch

vormittags

Tagsüber nachmittags
produzieren – nachts
verbrauchen

progens

produzieren – nachts
verbrauchen

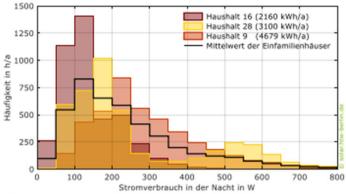
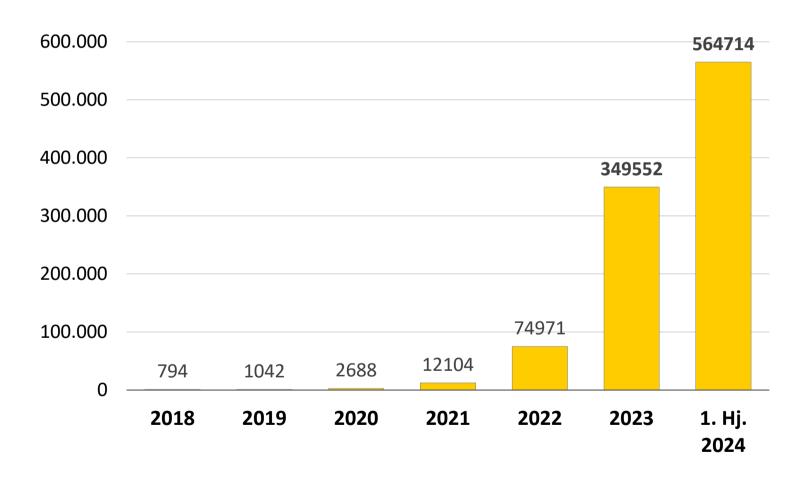


Bild 26 Häufigkeitsverteilung des nächtlichen Stromverbrauchs verschiedener Haushalte sowie mittlere Verteilung von 28 Eigenheimen auf Basis von 10-s-Messdaten. Der jährliche Strombedarf ist in den Klammern angeben. Im Mittel verbrauchen die 28 Haushalte 2965 kWh/a (Daten: ISFH [18], Klassenbreite: 50 W).

- + Erhöhung der PV-Eigennutzung und Autarkie
- + Reduzierung
 Netzstrombedarf
- + sehr sicher im Betrieb
- noch sehr hohe Kosten
- Bei geringem Nachtstrom-Bedarf ggf. nicht schnell amortisierbar
- Lebensdauer bis zu 15a

Agenda

- 1. Solarlotsen Gießen
- 2. Allgemeines
- 3. Update Technik
- 4. Balkon Kraftwerke (BKW)
- 5. Dach- PV für EFH und MFH
- 6. Q&A, Diskussion

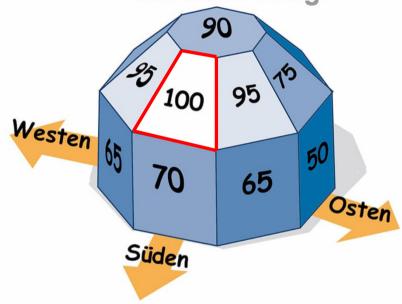


Balkonkraftwerke

Anzahl (gemeldeter) steckerfertiger PV-Anlagen in Deutschland

Quelle: Statista

Stand 1.07.2024

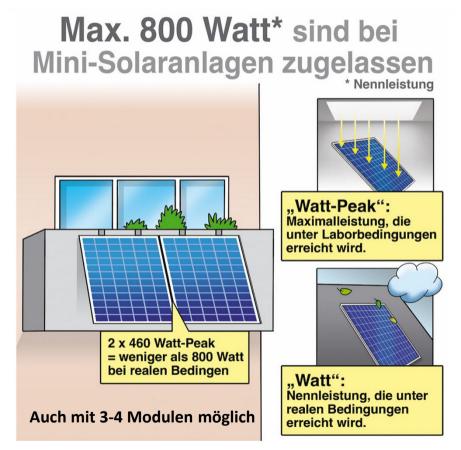


Balkonkraftwerke

Ausrichtung und Neigung der Anlage haben Einfluss auf den Ertrag.

Angaben in Prozent

Optimale Neigung in unseren Breiten: **38 grad gegenüber Horizont**

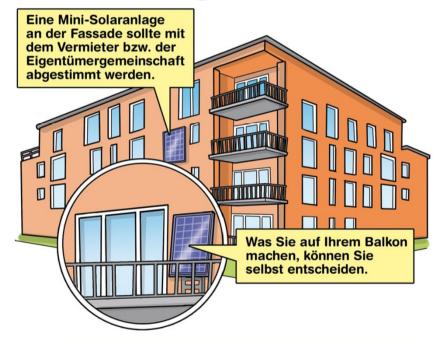


Vereinfachung durch Solarpaket 1 (seit April 2024)

Die Mini-Solaranlage kann jetzt viel leichter betrieben werden max 600 Watt Meldung bein Netzbetreiber und bei der Bundesnetzagentur max. 800 Watt Mieter und Eigentümer Energiesteckdose haben Anspruch auf Betrieb verwenden

Aber: VDE arbeitet noch an Ausführungs-Bestimmung bis E 2024!

Vereinfachung durch Solarpaket 1 (seit April 2024)

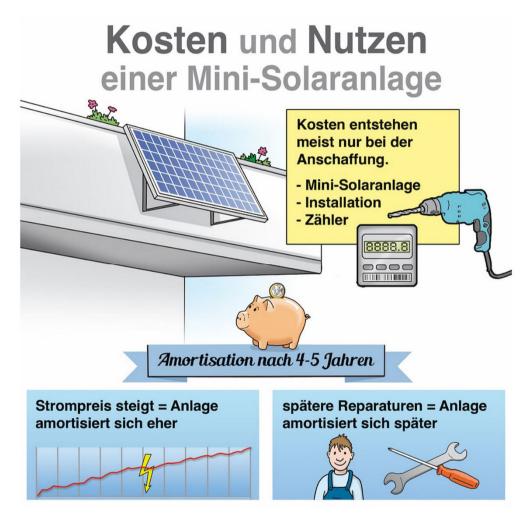

Die Mini-Solaranlage ist leicht installiert Wechselrichter mit dem Hausstromnetz verbinden. Solarmodul(e) mit dem Wechselrichter verbinden.

Beim Markenstammdatenregister (MaStR) anmelden!

Installation auch ohne Fachhandwerker, ggf. auch in Nachbarschaftshilfe, sonst unrentabel

Ob Sie eine Erlaubnis brauchen hängt u.A. von der Platzierung der Anlage ab

Seit 1. Oktober 2024 sind BKWs privilegiert



Installation und Amortisation

Materialien:

- 2 Module a' 420- 440 kWp
- 1 WR 800 W mit W-LAN
- AC- Kabel je nach Bedarf
- Außensteckdose (Schuko)
- Modulhalter
- Zeit und Helfer

Investition:

- +/- 400€
- 2x 3h Arbeit

Empfehlung:

Laien: Gesamtpaket

DIY: Einzelteile, wenn günstiger

Wirtschaftlichkeit

800 W-Anlage, 2 Module zusammen 880 Wpeak

Annahmen Jahresverbrauch: 2.000 kWh

Strompreis: 30 ct/kWh (keine Steigerung eingerechnet)

Kosten PV-Anlage: 400 €

PV-Anlage*									
Ausrichtung	Süd	Süd SW/SE							
Neigung	35°	70°	90°						
Stromerzeugung (kWh)	869	524							
Einsparung									
Strombezug (kWh)	376	336	288						
Jährliche Ersparnis rd.	113 €	101 €	91 €						
Amortisationszeit rd.	3,5 Jahre	4 Jahre	4,4 Jahre						

Ertragsrechner HTW Berlin: solar.htw-berlin.de/rechner/stecker-solar-simulator/

Batteriespeicher für BKW

- Aktuell: rechnen sich noch nicht
- Hohe Kosten Werbeversprechen kritisch prüfen
- (meist) kein Energiemanagement: statische Entladeleistung
- Stromausfall: keine Inselversorgung
- Aufstellung auf Balkon: Temperatureinfluss
- Kritik u.a.: sfv.de/balkonspeicher

Alternative Lösungen

- **Hauswände** (Südausrichtung)
- Garagen (aufgeständert)
- Carports (bifazial)
- **Terrassen** (bifazial)
- **Garten** (fix oder mobil)
 - Zäune (bifazial)

Agenda

- 1. Solarlotsen Gießen
- 2. Allgemeines
- 3. Update Technik
- 4. Balkon Kraftwerke (BKW)
- 5. Dach- PV für EFH und MFH
- 6. Q&A, Diskussion

Einspeisevergütungen

- Anspruch auf Einspeisevergütung: 20 Jahre + Rest Inbetriebnahmejahr
- Vergütung für ins Netz eingespeisten Solarstrom

Installierte Leistung	Überschusseinspeisung (Änderung nach Solarpaket I)	Volleinspeisung (Änderung nach Solarpaket I)
≤ 10 kW	8,11 ct/kWh	12,87 ct/kWh
≤ 40 kW	7,03 ct/kWh	10,79 ct/kWh
≤ 100 kW	5,74 ct/kWh + 1,5 ct/kWh = 7,24 ct/kWh	10,79 ct/kWh + 1,5 ct/kWh = 12,29 ct/kWh

Einspeisevergütung ab 01.02.24, Vermarktungskosten von 0,4 Ct/kWh nach § 53EEG bereits abgezogen

Zielsetzung: Maximierung der Eigennutzung,

Volleinspeisung bei privaten EFH kaum kostendeckend



Erste Schritte

- Daten der Dachabmessungen und Störungen über Google – Earth oder Google - Maps
- Erste grobe Abschätzung des PV- Potentials über web- Tools wie Solarkataster KG https://www.solarkataster-kg.de/#s=startscreen
- Eignung und Zustand des Daches ermitteln (ggf. Dachdecker und Statiker hinzuziehen)
- Interesse der Bewohner ermitteln und Projektteam/ Plan festlegen
- Ggf. erste Anfragen bei Energieberatern oder SolarLotsenGießen <u>beratung@solarlotsen-giessen.de</u>

Mitdenken für die Zukunft!

Solarstromspeicher:

- Wo soll der gespeicherte Strom genutzt werden?
 - -> Verschiedene Betriebskonzepte
- Dimensionierung?
 - -> Abschätzung zum Nutzer- und Verbrauchsverhalten
- Speicher verbessern nicht zwingend die Wirtschaftlichkeit!

Solarstrom für die Wärmepumpe

- Achtung: In aller Regel keine Vollversorgung möglich
- Innerstädtische Lage Ist ein Aufstellort vorhanden?
- Abrechnung über Betriebskostenabrechnung möglich

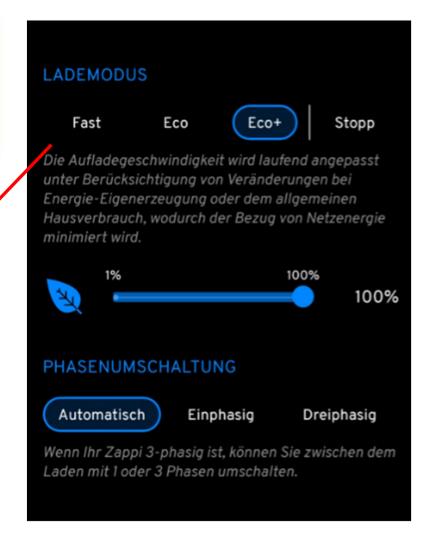
Wallbox

- Günstiger Ladestrom für Bewohner:innen
- Abrechnungssysteme etablieren z.B. über individuelle Stromrechnung

Die Randbedingungen zur Investition sind derzeit sehr günstig:

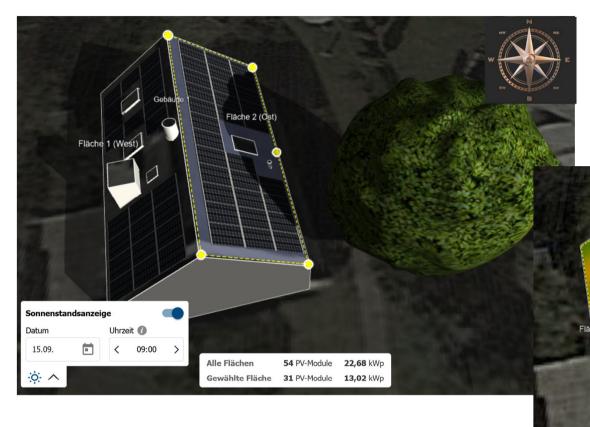
- Gesunkene Preise der PV- Module und Wechselrichter
- Mehrwertsteuer- Erlass noch gültig
- Einspeisevergütung noch vorhanden
- Erhöhte Kapazität von Solarteuren

Quelle: SFV



Intelligente Ladeinfrastruktur

Ideale Ladebox mit verschiedenen Modi und PV- Überschuss-Laden



Beispiel EFH "Münnerstadt"

Dachfläche: 9mx13m (proj.)

Wohnfläche: 160 m²

2 Personen (Homeoffice)

Strombedarf: 3200 kWh/a

Verschattungsproblematik in den unteren Modulreihen auf der Nord-Ost und Kamin auf der Süd-West Seite

Alle Flächen 22 PV-Module 9,24 kWp

Ergebnisse Optimierung EFH

		Berechnung Zusammenfassung:				Münne	rstadt							
	Bemerkung	Fläche 1 kWp	Fläche 2 kWp	Summe	Ratt	E-Auto	Verbrauch Gesamt	Erzeugung	aue DV	Invest	IRR	Amorti	Autarkie	Eigennut zung
Variante	.	Nord/Ost	Süd/West	Summe	kWh	kWh	kWh	kWh	kWh	€	%/a	Jahre	%	%
1	Basis Vollbelegung 10 kWh	9,66	13,02	22,68	10	0	3.200	16.900	3.160	36.500	1,1	18	92	19
2	Vollbelegung 5 kWh	9,66	13,02	22,68	5	0	3.200	16.900	2.900	33.500	1,7	17	85	17
3	Vollbelegung 0 kWh	9,66	13,02	22,68	0	0	3.200	16.900	1.720	30.500	0,8	19	51	10
4	Teilbelegung Ost/West 5kWh	5,04	4,2	9,24	5	0	3.200	6.950	2.540	17.000	3,6	15	74	37
5	Teilbelegung Ost/West 10 kWh	5,04	4,2	9,24	10	0	3.200	6.950	2.740	20.000	2,2	17	79	40
6	Teilbelegung Ost/West 0kWh	5,04	4,2	9,24	0	0	3.200	6.950	1.390	14.000	2,7	16	43	20
7	wie 4 mit 5 kWh und EV	5,04	4,2	9,24	5	2.260	5.460	6.950	6.307	17.000	4,6	14	51	42
8	wie 5 mit 10 kWh und EV	5,04	4,2	9,24	10	2.260	5.460	6.950	7.193	20.000	3,6	15	57	48
9	wie 8 mit Wärmepumpe	5,04	4,2	9,24	10	2.260	10.460	6.950	6.950	20.000	7,1	11	46	72

Randbedingungen:

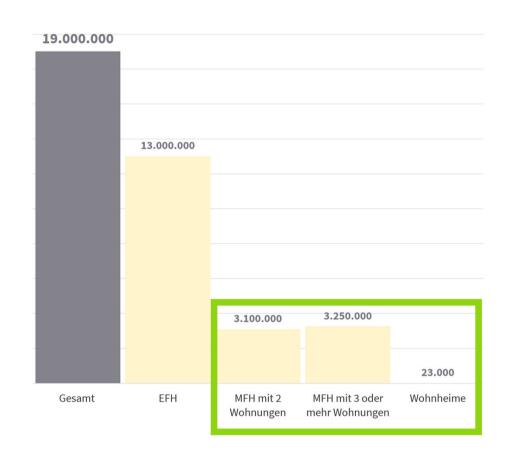
> Arbeitspreis Strom: 32ct/kWh

➤ Grundpreis im Monat: 12€

Preissteigerung 3%/a

Einspeisung 8 ct/ kWh

Variation von PV- Leistung und Speicher ergibt die beste Lösung aus wirtschaftlicher und umweltorientierter Sicht



Wohngebäude in Deutschland

6,4 Mio MFH entsprechen ca. 30% des gesamten Hausbestandes

BMWK:

ca. 20% für PV einfach nutzbar, davon derzeit nur 3% umgesetzt

https://www.sfv.de/pv-auf-mehrfamilienhaeusern

Quelle: SFV

Besonderheiten bei PV auf MFH

Besonderheiten auf MFH

- Intensive Vorplanung: Häuser meist innerstädtisch -> Nachbar-Bebauung (Abstände), eventueller Denkmal- und Ensembleschutz
- Höhere Installationskosten:
 Mehraufwand bei Gerüst/Kran,
 Gebäudehöhe, Leitungen, Zähler
- Verwaltung: Höherer Planung- und Abrechnungsaufwand

Jedoch auch:

- → Spez. geringere Kosten für PV- Module, Montage und Speicher
- → Gemeinsame Entscheidung erforderlich (einfache Mehrheit)

Mögliche Betriebsmodelle

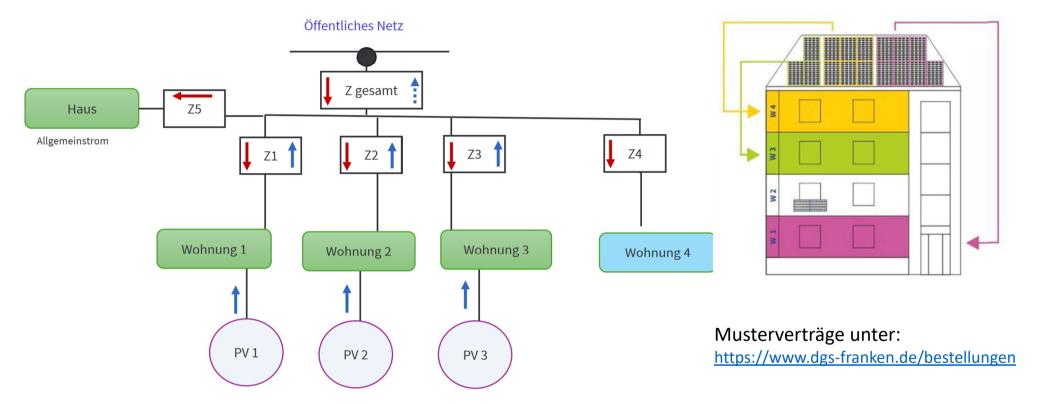
1. Volleinspeisung

wenig sinnvoll

- 2. Einzelanlagen Modell
- 3. Allgemeinstromversorgung
- 4. Stromlieferung an Mieter bzw. Wohnungseigentümer
- 5. Gemeinschaftliche Gebäudeversorgung (GGV)
- 6. Energy Sharing

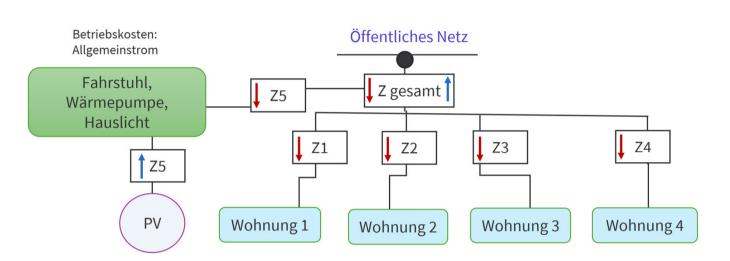
aktuell und sinnvoll

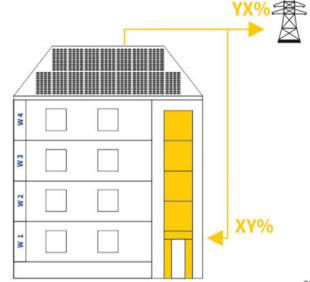
NEU! (mit Smart Meter)



2. Einzelanlagen Modell

- > Einzelne Personen (Mieter/ Besitzer) investieren
- ➤ Keine/ wenig Synergien bei Infrastruktur
- Sehr hoher Investitions-, Betriebs- und Abrechnungsaufwand
- Getrennte Speicherung nach Bedarf optimierbar
- Modell Anlagenmiete nach Nutzerinteresse möglich

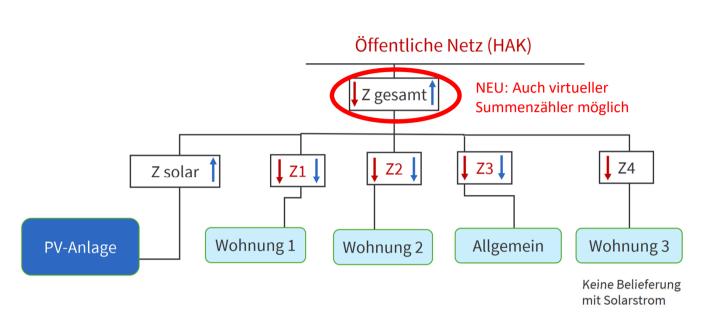


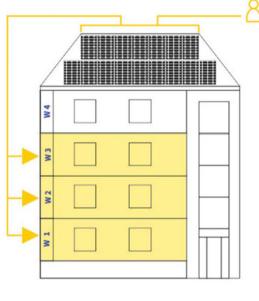


3. Allgemeinstromversorgung

- Eigentümer finanziert/finanzieren und betreibt/ betreiben
- Investition von Drittanbietern möglich
- Nur für Allgemeinstrom (Hauslicht, Aufzug, Garage etc.) <5%</p>
- ➤ Geringer PV- Bedarf, meist dann Abends → Speicher erforderlich
- > Nur sinnhaft bei kleinen Dachflächen/ Anlagen
- Steuerbefreiung wg. Kleinunternehmertum (<100 kWp)</p>

Quelle: SFV

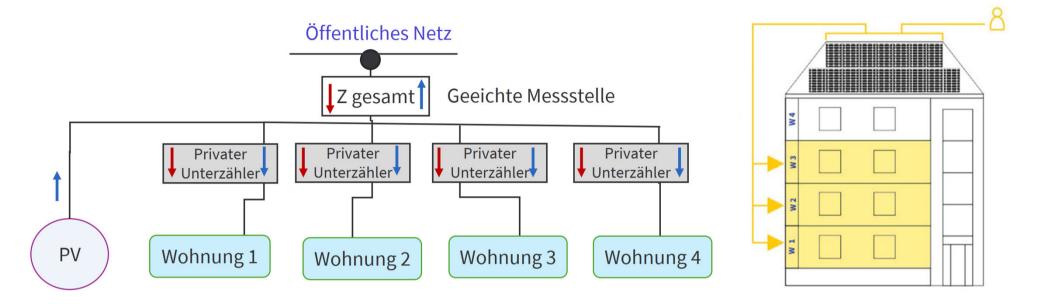




4a. Mieterstrommodell

- Gefördert mit Mieterstromzuschlag ca. 2-2,5 ct/kWh
- Erzeuger wird EVU, Mieter werden Vertragsnehmer
- Bis max. 100kWp und 40% Fläche für Wohnzwecke
- Stromkosten <90% der Kosten des Grundversorgers</p>
- Keine Stromsteuerbefreiung
- Weiterhin freie Wahl des Reststrom- Versorgers

Sehr kompliziert wird nicht empfohlen



4b. Kollektive Selbstversorgung

- ➤ Einzähler- Modell gegenüber Versorger → reduzierte Grundgebühr
- > Hausgemeinschaft (Ggf. e.G) ist einzelner Kunde für Netzbetreiber
- Investition durch Kaufpreis (Neu) oder Rücklagen (Bestand)
- Viele Synergien bei Infrastruktur
- Vereinfachung der Abrechnung über Nebenkosten/ Hausgeld

Aber: Einigung aller auf ein gemeinschaftliches Abrechnungs-Modell erforderlich

https://energieagentur-regio-freiburg.eu/glossary/beschlussvorlage/

Quelle: SFV

Solar Lotsen Gießen Beispiel kollektive Selbstversorgung

14 Wohneinheiten

Sept. 2021

Ca. 28 Bewohner

Febr. 2023

2x 15 kWh Batterie- Speicher

3x 11kW Ladestationen

(System für autom. PV-Überschussladen)

Zähler- Schränke

Haupt- Zähler

Wohnungs- Zähler 2x (intern)

Ladebox- Zähler

Photovoltaik macht unabhängig(er)

Solar Lotsen Gießen 5. Gemeinschaftliche Gebäudeversorgung (GGV)

Basis: §42b Energiewirtschaftsgesetz Mai 2024

Konzept:

- Solarstrom wird von Solaranlagenbetreibenden (Einzelperson, Firma, Gemeinschaftsinvestition) nach einem festgelegten Zuteilungsschlüssel an die Haushalte verteilt
- 2. Verpflichtender Gebäudestromliefervertrag
- 3. Anlagenbetreiber:in rechnet Solarstrom mit dem Haushalt ab
- 4. Reststrombelieferung regelt der einzelne Haushalt
- 5. Freiwillige Teilnahme an der GGV
- 6. Daten zur Abrechnung der Strommengen: Messstellenbetreiber / Dienstleister
- 7. Keine Abgaben (Stromsteuer, Netzgebühren, Konzessionsabgabe...)

Grundvoraussetzung

- Pflicht zur 1/4h-Messung in jedem Haushalt im MFH
- Abrechnung nur für einen Anschlusspunkt (Gebäude + Nebenanlage) möglich

https://www.youtube.com/watch?v=VP31JI2TGn0

Musterverträge von https://www.dgs-franken.de/home

Quelle: SFV

Solar Lotsen Gießen 5. Gemeinschaftliche Gebäudeversorgung (GGV)

Basis: §42b Energiewirtschaftsgesetz Mai 2024

- el an die

 - Messstellenbetreiber / Dienstleister
 - Soühren, Konzessionsabgabe...)

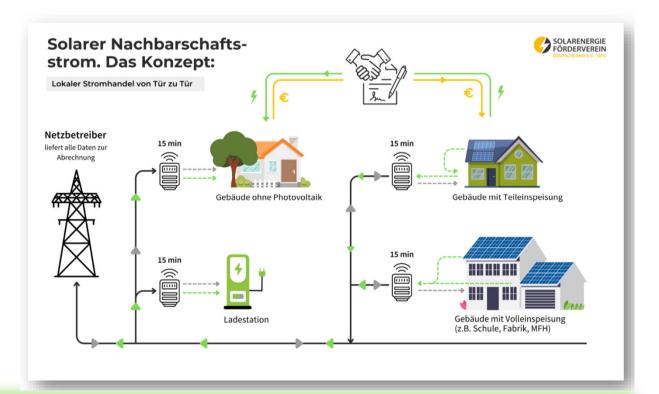
für einen Anschlusspunkt (Gebäude + Nebenanlage) möglich

ittps://www.youtube.com/watch?v=VP31JI2TGn0

Musterverträge von https://www.dgs-franken.de/home

Quelle: SFV

6. Energy Sharing (Art. 15a EMD)


Anwendungsfall 1:

Bildung von Bürgerenergiegemeinschaften und Versorgung von Strom im Umkreis von max. 50 km

Anwendungsfall 2

(Use Case 2) Vorschlag von SFV, BNE

- Verkauf von Solarstrom in der Nachbarschaft (von "Tür zu Tür")
- Keine Lieferantenpflichten, Teilund Vollbelieferung von Stromkunden
- Standardisierte Lieferverträge
- Eigenverbrauch- und Volleinspeiseanlagen
- Verminderte Netzgebühr, keine Stromsteuer

Basis: Europäische Elektrizitätsbinnenmarktrichtlinie (Art. 15 a EMD)

Derzeit noch in der gesetzlichen Abstimmung in den Ministerien

Agenda

- 1. Solarlotsen Gießen
- 2. Allgemeines
- 3. Update Technik
- 4. Balkon Kraftwerke (BKW)
- 5. Dach- PV für EFH und MFH
- 6. Q&A, Diskussion

